

Recovery of Radioactive Objects by Channel-Specific Analysis of Gamma Scan Data

Hunters Point Naval Shipyard, San Francisco, CA

Presented By
Hamide Kayaci
Naval Facilities Engineering Command (NAVFAC)
BRAC PMO

Objective

 Present a methodology to locate buried radioactive objects (ROs) below ground surface

Overview

- Site Location and Background
- Problem and Challenge
- Channel-Specific Gamma Scan Data Collection and Analysis
- Assessment of Results
- Summary

Hunters Point Naval Shipyard Parcel D-1

Mobile Gamma Scan Technique

Common Features:

- Uses Radiation
 Solutions, Inc. RS-700
 mobile gamma-ray
 detection system
- Detector mounted on cart pulled behind small tractor with adjustable throttle

RS-700 Gamma-Ray Detection System

Enhanced Data Quality

- Fixed (surveyor-independent) scan rate / source-to-detector geometry
- High gamma sensitivity (large Nal crystal)
- Gamma energy discrimination capability

Regions of Interest

Gamma count data analyzed by regions of interest (ROIs)

- RS-700 collects photon energy response over 1,024 channels
- Each radionuclide has a specific energy peak per IAEA
- The channel-to energy conversion (1 channel= ~3keV)
- Background ROIs (e.g., K-40, Cs-137, Ra-226, Th-232)
 - Naturally occurring (or environmentally present) serve as de facto background baselines
- Project-specific ROIs
 - Based on radionuclides of concern (or gamma-emitting progeny)

Selected ROIs Used in Analysis

ROIs are programmed into RS-700 prior to data collection

		Channel		Energy (keV)		
ROI	ROI Name	Start	End	Start	End	Basis/Discussion
02	K-40	457	523	1371	1569	based on K-40 1461 keV peak (IAEA setting)
03	Ra-226 (1764)	553	620	1659	1860	based on progeny Bi-214 1764 keV peak (IAEA setting)
04	Th-232	803	937	2409	2811	based on progeny TI-208 2614 keV peak (IAEA setting)
06	Ra-226 (609)	182	222	546	666	based on progeny Bi-214 609 keV peak
07	Cs-137	183	247	549	741	based on Cs/Ba-137 662 keV peak
10	Gross Counts	1	1024	3	3072	Based on full channel (i.e., total gamma) spectrum

Channel-Specific Analysis Using ROIs

Step 1 – Assess data population using background ROIs

- spatial distribution of fill materials and/or variation in naturally occurring radioactivity in soil
- broken out for analysis into radiologically homogeneous areas
- The following slides illustrate the Step 1 process

Gross Counts [ROI 10]

- Bottom half is clearly dissimilar to top half of site
- Geometric shapes suggest event-related dissimilarities
- Red clusters in top right and middle left are clear outliers
- Most spatial analyses of data do not proceed past this point

Th-232 (2614 keV) [ROI 04]

- Due to its relatively high energy region, ROI is least affected by presence of other naturally occurring radionuclides
- Largely similar soil concentrations across entire site
- Red clusters in top and middle right areas distinctly apparent (but not of particular interest at this point in analysis)

K-40 (1461 keV) [ROI 02]

- Due to its relatively high energy region, ROI is largely unaffected by presence of other naturally occurring radionuclides
- Distinctly dissimilar soil areas in top corner and bottom half of site

Cs-137 (662 keV) [ROI 07]

- Limited utility as ROI since it largely overlaps much of same region as Ra-226 (609 keV) ROI
- Distinctly dissimilar soil areas in top (vs bottom) half of site, also evident on K-40 ROI map

Ra-226 (1764 keV) [ROI 03]

- Red oval cluster in top right and smaller clusters located in lower right apparent on both Ra-226 ROI maps
- Clusters could indicate borrow material picked up and laid down in systematic manner or discrete Ra-226 objects

Channel-Specific Analysis Using ROIs

Step 2 – Spatially segregate data population into like groupings for more detailed analysis

- Allows drill-down to extract more detailed information from data
- More detailed data analysis performed using project-specific ROIs to pinpoint discrete radiation anomalies that may warrant field investigation
- Graphical and numerical methods used to focus investigation on areas which cannot be explained using ROI-based analytical methods
- Statistical outliers become focus of analysis

Radiologically Similar Subgroupings

- Graphic shows gross counts [ROI 10] over entire Parcel D-1 area surveyed
- Data population spatially broken out into four radiologically homogenous subgroupings for further analysis
- Each corresponding data set used to generate z-score contour maps to assess spatial patterns in data and finite locations that may represent discrete objects
- Focus shifts from spatial groupings to statistical outliers that may represent radioactive objects

< 20%

> 80%

Z-Score Contour Mapping

- Separate z-score maps generated for each subgrouping
- Separate contour maps graphically joined together as a single map to identify discrete field locations to investigate
- Four color divisions used to represent z-score value ranges
- Extreme spatial dissimilarities largely disappear when analyzed by subgrouping
- Sixteen discrete locations selected for field investigation; four objects recovered

Z-Score

< 2.0

> 4.0

Assessment of Results

- Radioactive objects recovered at depths between 1 to 3 ft bgs with radiation levels as low as 25 µR/hr on-contact
- Recovered objects demonstrate how channel-specific analysis enables discovery of objects with lower radioactivity at greater depths

ID	On-Contact Reading (µR/hr)	Recovery Depth (ft bgs)	Description of Radioactive Object
01	3,200	0.5	Button or deck marker
02	23	0.5	Small soil clump with visible rust particles
05	1,500	0.5	1½-in piece with clip on one side
06	480	1.5	Small soil clump with visible rust particles
07	60	1.5	Small soil clump with visible rust particles
80	500	2-3	Corroded and damaged can
09	460	2-3	Corroded/damaged metal gauge or can
10	420	2-3	Small soil clump with visible rust particles
11	25	1-2	Small soil clump with visible rust particles
12	33	1-2	Small soil clump with visible rust particles

Objects recovered using channel-specific analysis

Hunters Point Naval Shipyard

Summary

Improved Data Collection Technique

- Fixed (surveyor-independent) scan rate / source-to-detector geometry
- Significantly higher gamma sensitivity based on size of NaI crystal
- Gamma energy discrimination capability (programmed ROIs)

Channel-Specific Analysis of Gamma Scan Data

- Use of background ROIs (e.g., K-40, Cs-137, and Th-232) to spatially segregate radiologically homogenous groupings for further analysis
- Use of project-specific ROIs to distinguish between naturally occurring radionuclides and to identify most likely locations of discrete objects
- Graphical and numerical methods used to further focus on areas which cannot be explained using ROI-based analytical methods

Knowledge Check

Which of the following is not a benefit of the RS-700 system?

- A. ability to detect lower amounts of radioactivity present
- B. ability to distinguish between different radionuclides in the field
- C. portability
- D. ability to play back collected data for analysis at a later date

Contacts and Questions

Points of Contact

NAVFAC LIST FEC: Hamide Kayaci

hamide.kayaci@navy.mil

RASO: Matt Liscio

matthew.liscio@navy.mil

Questions?